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AbstracL The current-field and the conductivity-field characteristics of random hopping non- 
uniform systems in the limit of a weak electron-phonon coupling (band-like hopping transport 
in disordered solids) have been calculated numerically within the Bottger-Bryksin model. In 
particular, we consider thin layers placed between two planar Ohmic contacts, with exponential 
spatial variations in the total cenw concentration over the layer thickness. We find that 
firstly for r-hopping m s p o r t  in spatially uniform layers the current decreases with increasing 
field, reaching a conslant saturation value. and on increasing the degree of non-uniformity the 
saturation current becams lower and secondly both uniform and non-uniform r-&-hopping 
systems are almost exactly Ohmic in the investigated field range; conductivity decreases on 
increasing the degree of non-uniformity of the centre distlibution. The dependences on the 
degree of the layer non-uniformity in the limit of weak electron-phonon coupling are quite 
different from the dependences in the case of strong electron-phonon coupling. 

1. Introduction 

The non-Ohmic hopping conductivity for a strong electron-phonon interaction has been 
discussed in a number of papers (Bottger and Wegener 1984, Bottger et a1 1985, 1986, 
Bottger and Bryksin 1979, 1980, 1985, Nguyen Van Lien and Shklovskii 1981, Fishchuk 
1982, Mancini etuf 1993). The main results may be summarized as follows. For r-hopping 
transport in macroscopically uniform systems the differential conductivity U decreases 
with increasing applied external field E at relatively low fields, whereas for sufficiently 
high fields the conductivity U increases rapidly. In non-uniform systems (in particular in 
systems with an exponential dependence of the hopping centre concentration on the distance 
from the contact, (Mancini et al 1993)) there may occur conductivity saturation instead of 
rapid growth, so that the system becomes Ohmic, at least up to fields consistent with the 
assumption of constant carrier concentration. For r-e-hopping transport in unifrom systems 
the conductivity-field characteristics have an N-like shape; a local maximum is followed by 
a local minimum of the differential conductivity, and then an exponential increase occurs, 
at least at not too low temperatures (Bottger et al 1986). Here again the influence of 
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the spatial non-uniformity of the sample is remarkable. In particular, for sufficiently non- 
uniform layers, there is no conductivity maximum at low fields, but the local negative 
minimum is followed by a saturated small positive value (Mancini et ai 1993). 

In view of the marked dependence of the conductivity-field characteristics on the spatial 
non-uniformity of the hopping centre distribution in the case of strong electron-phonon 
coupling, it seems interesting to investigate the predictions of the model Bottger and Bryksin 
also for the case of a weak electron-phonon interaction. Some preliminary results have been 
briefly reported by Mancini era1 (1991). In the present paper we describe in detail the results 
of the numerical simulations of the current-field and conductivity-field characteristics for 
r-hopping, and r-&-hopping transport in the limit of weak electron-phonon coupling (i.e. 
for band-like transport) in thin layers placed between two planar Ohmic contacts, with an 
average density of hopping centres (section 3) exponentially decreasing in space. Section 4 
contains concluding remarks. 

Before presenting our results, however, we recall briefly the basic equations describing 
hopping conductivity (Bottger and Btyksin 1985). 

2. Basic equations and simulation algorithm 

For an electric field E of arbitrary strength, the density j of the DC hopping current is 
given by (Bottger and Bryksin 1985) 

where R, is the position of the mth hopping site, CZ is the volume of the system, and 
i(m', m) is the current running from site m' to site m. The latter may be written as 

i@'. m) = e W m d p d l  - Pm)exp(BVm,m/2) - Pm(1 - pm,)ex~(-Bvm,mP)l (2) 
where V,,,,, = V,, - V,,,, V ,  = E~ + eu,, E, is the energy of the mth site, U, is the 
potential of the external field E at the point R,, p = l / k T ,  k is the Boltzmann constant, 
T is the temperature, p, is the occupation probability of site m, W,,,,,,, is the symmetrized 
hopping probability, and e is the elementary charge. The latter in the limit of a weak 
electron-phonon interaction may be expressed as 

where 01 is the reciprocal Bohr radius, and the prefactor WO depends only weakly on the 
external electric field E, as well as on the site position R, and energy E,. 

Our numerical results have been obtained from equations (1)-(3), where the occupation 
probabilities pij are the solution of 

together with the normalization condition 

N-' pm = n (5) 
m 

where n is the concentration of electrons in the system, and N is the total site number within 
volume R. The algorithm that we used follows the general guidelines described by Bottger 
and Wegener (1984). Our slight modification consists in applying the periodic boundary 
conditions in directions perpendicular to the external electic field. In particular, in the 
directions perpendicular to the applied field we have constructed an infinite series of the 



Hopping conductivity of inhomogeneous layers 8469 

replicas of the simulation box, and the distances between the hopping sites were calculated 
using the minimum-image convention (see, e.g., Wood and Parker (1957)). Each of the 
curves shown below consists of 100 points, i.e. has been obtained by resolving equations 
(I)+) at k AE, k = 1,. . . ,100 equidistant values within the field range considered. 

3. Numerical results and discussion 

First let us specify the values of the parameters, which are common for the curves. As in 
our previous paper (Mancini et al 1993, hereafter referred to as I) we made the following 
assumptions 

(a) The concentration n of electrons in the system is equal to 0.5 and does not depend 
on the applied electric field. 

(b) We deal with relatively diluted systems with 01N-l'~ = 15.0 (N = N / Q ) .  
(c) To show the influence of the spatial variations ofthe average centre concentration on 

the current-field and conductivity field characteristics, we choose for our model simulations 
an exponential spatial dependence of the average density N h ( X ) ,  of hopping centres given 
by 

Nh(x)  = No(D)exP(-X/D) (6) 
where x is the distance measured from one of the electrodes (0 c x c L ,  with L the layer 
thickness) and D is a characteristic length of the site concentration decay. Such a distribution 
can originate from diffusive or radiative processes. The ratio LID may be referred to as the 
degree of non-uniformity of the distribution. In what follows we consider LID in the range 
from 0.0 to 2.5. The centre concentration &(o) at x = 0 equal No(D), and for each value of 
D is chosen in such a way that the total number N of hopping centres within the simulation 
box is constant ( N  = 500 for r hopping, and N = 250 for r--E hopping). The results 
obviously do not depend on the layer polarization. As far as the influence of the random 
initial distribution is concerned, the characteristics for various random generations of the 
centre distribution lead to some differences in numerical values, leaving the curve shape 
qualitatively unchanged. In a similar way to the strong electron-phonon interaction (cf I), the 
quantitative discrepancies are most pronounced for macroscopically uniform distributions 
and almost do not exist for highly non-uniform structures. 

3.1. r -  and r-&-hopping transport; uniform systems 

To the best of our knowledge, no extensive calculations of the current-field Characteristics 
for a weak electron-phonon interaction have been performed. Only two such characteristics 
appear in the literature (those given by Bottger and Wegener (1984) and Bottger and Bryksin 
(1985)), both calculated for the case of r-hopping transport. The curves differ markedly 
(figures 1A and lB, respectively), and no explanation of the discrepancies is given. Our 
current-field characteristics for uniform systems without any spread in the centre energy 
(U = 0.OkT) agree with those obtained by Bottger and Wegener (1984) (figure 1A). The 
curve in figure 1A requires some comments. For U = O.OkT, equation (3) gives an infinite 
value of the symmetrized hopping probability and thus cannot be used for the calcualtion 
of the current at E 0. In order to perform the first step AE,  we use the corresponding 
expression for a strong electron-phonon interaction: Wmmf = WO exp(-201&mrl). Thus at 
E = 0 the current zero (by definition), and at E = 1 x AE it assumes immediately a finite 
value, so that the initial linear current increase seen in figure 1A has no physical meaning. 
The calculations performed with various values of the field increment A E  show, however, 
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that neither the low-field limit of the current nor the characteristics’ shape scarcely depend 
on A E ,  if only the same numerical precision is held. 

. . . . , .. 
I . 

f 0.sp.i 
: . I  

Figure 1. Current-field characteristics for a weak electron-phonon interaction in 
macroscopidly uniform layers with no spread in energy levels: A, after BaUger and Wegener 
(1984); B, after Bottger and Brybin (1985). 

As far as the curve in figure 1B (quoted here after Bottger and Bryksin (1985) and 
described therein as a characteristic obtained ‘without any energetic disorder’) is concerned, 
we were unable to reproduce its shape within simulations with U equal exactly to zero. 
From the physical point of view, however, energy distributions with U-values in the range 
0 < U i IkT could be considered as distributions with ‘no’ energy spread of the levels (U 

is defined here as the sixfold variance of the Gaussian energy distribution). By applying 
the algorithm for r-E hopping with U <( IkT, one avoids formally the division by zero in 
(3) .  The denominator, however, turns out to be a small number, leading again to numerical 
problems, so that the U --f 0 limit is still not reachable. No convergence has been obtained 
for U < 0.025kT above E’ % 0.005 (E‘ = @eE/ar) .  For the energy distribution width 
U = 0.25kT we were able to calculate the j - E  characteristic for N = 250 hopping centres 
up to about E % 0.01. The typical shape of the characteristics obtained in this way for 
several random generations of the centres within the simulation box is similar to that of 
Bottger and Bryksin (1985) (figure 1B) and thus we conclude that the latter was probably 
obtained for an r-&-hopping system with a very narrow energy centre distribution. 

After commenting on the literature results for unifrom systems let us turn to the 
presentation of our results on the influence of the spatial non-uniformity of the centre 
distribution. The current-field characteristics for r-hopping transport (calculated by using 
the strong electron-phonon interaction formula for the first step at E’ = 0). and for r-8- 
hopping transport, both depending on the layer non-uniformity parameter LID,  are discussed 
in sections 3.2 and 3.3, respectively. 

3.2. r-hopping transport; non-uniform systems 

Figure 2 shows the current-field and the differential conductivity-field characteristics for 
various values of the non-uniformity parameter LID in the range 0.0-2.5, as a function of 
a dimensionless field argument E‘ = eE,!?/a, ,!? = l / k T .  The current-field characteristics 
(figure 2A) are normalized to the initial value of the current j ,  = j ( E  = 0.01). In each case, 
j ,  was also the maximum value of the current, so that j ,  = jmox.  This maximum value is 
followed by a current decay down to the minimum (saturation) value. The quantities which 
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Figure 2. A, current-field characteristics for various values of the non-unformity parameter 
L I D :  curve a, L I D  = 0.0; curve b. L I D  = 0.5: curve c. L I D  = 1.0;  curved, LID = 1.5; 
curve e, L I D  = 2.0; curve f, L I D  = 2.5. B, differential conductivities a(E')/o(E' = 0) 
calculated from characteristics a-f of A. We& electron-phonon coupling; N = 5W. 

depend markedly on LID are the values of the saturation current, and the field at which the 
saturation occurs. With increasing sample non-uniformity the current reaches its saturation 
value for a systematically increasing field. The final current values is lower for higher LID. 
Thus, as far as the current-field characteristics are concerned, increasing LID changes the 
curves only qualitatively. The effect is, however, extremely strong (the saturation currents 
differ by about ten orders of magnitude as L/D changes in the range 0.W2.5). For a strong 
electron-phonon interaction (cf I), the presence of the spatial non-uniformity changes the 
characteristics also qualitatively. 

Figure 2B shows differential conductivities u(E') corresponding to the j versus E' 
characteristics in figure 2A (normalized to u(E' = 0)). The curves corresponding to 
different LID-values retain their typical shape; the conductivity decreases, reaches its 
minimum and then approaches a saturated small negative value (at Esar). The depth of 
the conductivity minimum depends dramatically on L/D. E,,, also depends on LID and 
is lower for more non-uniform systems. This behaviour is quite different from the case of 
a strong electron-phonon interaction, where all the U versus E' curves with LID > 1.0 
almost coincide (cf I), so that the relative differential conductivity variations as a function 
of the applied field do not depend on the degree of non-uniformity of the centre distribution, 
the conductivity satuaration field E&t is almost L I D  independent, and saturation takes place 
only in sufficiently non-uniform systems. In a similar way to in I, we have constructed the 
histograms of the average occupation probabilities P ( i )  of the centres as a function of E', 
for each value of LID. The average occupation probabilities P ( i ) ,  i = 1,. . . , 10 were 
calculated as the arithmetic media over subsequent slices L/10 thick. Figures 3 and 4 show 
several such histograms (for LID = 0.0 and 2.5, respectively) at several values of E'. 
The histograms in figures 3A and 4A show the average centIe occupations for a very low 
electric field (E' = 0.01). P ( i )  is approximately constant over the layer thickness for the 
uniform centre distribution (figure 3A) and increases with increasing i for the centre average 
concentration decaying with increasing i (figure 4A). Nowhere is the average occupation 
close to 1. Increasing field leads to marked changes in P(i) .  For LID 2 1.0 the field 
range in which the average occupation in the central part of a layer tends to ahout one 
(over about 10% of the layer thickness) corresponds to the conductivity decay towards its 
minimum value. On increasing the field, although the spatial extension of the region with 



8472 G Mancini et al 

almost fully occupied centres increases, the differential conductivity begins to increase. 
In contradistinction to the case of a swong electron-phonon interaction, the increasing 
field is not able to enforce the effective canier motion, and the current always decays, 
so that the conductivity has a small negative value up to the maximum fields (assumption 
of constant carrier concentration). The described behaviour of non-uniform systems is only 
quantitatively different from the behaviour of macroscopically uniform samples, where the 
conductivity also remains negative, but the conductivity minimum is much less deep than 
for the non-uniform samples. The average occupation histograms show that, for uniform 
systems, full occupation is never reached. Up to the highest fields, the average centre 
occupation does not exceed 0.7 in any of the slices. The shallow conductivity minimum 
(occurring at E' = 0.06), however, corresponds to somewhat higher centre occupations 
(about 10% of the layer thickness has an average centre occupation of about 0.8 in the field 
range 0.05 < E' < 0.1). 

Figure 3. Histograms of ule average occupation probability for LID = 0.0: A. E' = 0.01; 
B, E' = 1.0. 

Figure 4. Histograms of the average occupation probability for LID = 2.5: A, E' = 0.01; 
B. E' = 0.7. 

3.3. r-s-hopping transport: non-uniform systems 

As far as r-s-hopping transport is concerned, no published results are known to the present 
authors. In this case, as mentioned in section 3.1, great numerical problems appear. We 
were able to perform numerically reliable calculations for random systems containing only 
N = 2-50 hopping centres, rarely arriving at fields higher than E' = 0.01 (for typical 
values of (Y and p this corresponds to about I@ V m-'). A sample containing such a 
small number of centres, distributed at random in space, as well as in energy, is a rather 
poor representation of real systems, even if periodic boundary conditions are imposed. 
Thus, for each set of input parameters, the calculations were repeated for several random 
initial generations of the centres within the simulation box. It turned out that, although 
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the numerical values of the calculated currents depend strongly on the random position 
generation, the qualitative tendencies in changing U and L/D are reproducible. In the 
figures below, we show exemplary but typical curves. 

t2r I i t ,  I 

Figure 5. Cunenr-field characteristics for ra-hopping in the limit of a weak electron-phonon 
interaction: A, U = 0.25kT; B, (I = 12.0kT. Curves a, L I D  = 0: ewes b, LID = 1.0. e w e s  
c. LID = 1.5. Number of centres in the simulation bax N = 250. 

Figure 5 shows the current-field characteristics for various widths U of energy 
distribution of the centres (figures 5A and 5B), and various values of the macroscopic 
non-uniformity parameter L I D  (curves a, b and c). In all the cases the current increases 
with increasing field. Such behaviour is quite different from the results obtained for ideal 
(U = O.OkT) r hopping. In the latter case the current decreases monotonically with 
increasing field, reaching a low saturation value at much higher fields. In the field range 
(E' < 0.01) considered here, ideal (U = 0.OkT) r-hopping currents remain almost constant, 
decreasing slightly on increasing the field (by a few per cent). Such behaviour can be 
explained by the field dependence of the symmetrized transition probability U'", between 
the centres. Without any energy disorder of hopping centres, the transition probability 
decreases simply on increasing the field as sinh[elu, - umrIj3/2]-], and the calculated 
currents are monotonically decreasing functions of E'. In this case, only the nearest- 
neighbour hops are effective. The presence of the energy disorder allows variable-range 
hopping, which promotes the canier transport effectively; so in the low-field region the 
currents increase with increasing field. As seen from figure 5, for each value of a the 
currents become lower when the L/D parameter increases, because of harder hops in the 
lowest centre concentration region. 

Figure 6 shows the dependence of the current-field characteristics on the energy 
distribution width a, or alternatively on the temperature. Here the currents become lower on 
increasing u / k T .  In fact, for a wider energy spread of the centres there are few neighbouring 
centres of comparable energy, the deeper centres are occupied, and the shallower centres, 
although empty, are too greatly separated in energy, so that a high activation energy is 
necessary. As a result, for wider energy distributions the electron hops become more 
difficult. 

Figure 7 shows differential conductivities calculated from several current-field 
characteristics on figures 5 and 6. The systems are almost Ohmic, and the dependences of the 
conductivity values on L I D  and U agree with the preceding discussion. In contradistinction, 
differential conductivity in the m e  of a strong electron-phonon interaction, instead of being 
constant, decays markedly over the same field range (cf I). 
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Figure 6. Current-field characteristics for r-z hopping in the limit of a weak electron-phonon 
interaction: A, L I D  = 0: B, L I D  = 1.5. Curves a, U = O.25kT; curves b, U = 3.0kT; curves 
c. D = 6.0kT; curves d, D = I2kT. The number N of centres in the simnlation box equals 250. 
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Figure 7. Differential conductivities calculated from several current-field characteristics: A, 
LID = 0.0; B, L j D  = 1.5, Curves a, D = 3.0kT; curves b, D = 6.0kT; curves c, q = 12.0kT. 

The average centre occupations are only slightly field dependent (figure 8). The most 
pronounced changes occur for low energy distribution width U ,  and high non-uniformity 
degree L I D  (cf the histogram in figure 8B). Here again the appearance of the bulk region of 
enhanced average occupation leads to some decrease in the conductivity (curve a in figure 
7B). 

Figure 8. Histograms of h e  average occupation probability for U = 3.0kT. L j D  = 1.5: A, 
E’ = 0.007; B. E’ = 0.01. 
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4. Concluding remarks 

The model of hopping transport in the limit of weak electron-phonon interaction proposed by 
Bottger and Bryksin turns out to be very difficult for numerical treatment. In order to obtain 
fully realistic results, one should perform calculations involving many more centres in the 
simulation box. Moreover, the mathematical formulation of the problem is not applicable 
directly to the limit of ideal r-hopping (discrete energy level), at least at E' = 0. We think, 
however, that even somewhat oversimplified numerical results reveal at least qualitative 
behaviours of real physical systems. On the basis of the results discussed above, we can 
state that there are significant quantitative and qualitative changes due to quasi-continuous 
variations in the average centre concentration over the sample thickness in the case of a weak 
electron-phonon interaction. The dependences on the degree of the layer non-uniformity in 
the limit of weak electron-phonon coupling are quite different from the dependences in the 
case of strong electron-phonon coupling. 
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